Unsupervised image segmentation
نویسندگان
چکیده
We present an unsupervised segmentation algorithm comprising an annealing process to select the maximum a posteriori (MAP) realization of a Hierarchical Markov Random Field (MRF) Model. The algorithm consists of a sampling framework which unifies the processes of model selection, parameter estimation and image segmentation, in a single Markov Chain. To achieve this, Reversible Jumps are incorporated into the Markov Chain to allow movement between model spaces. By using partial decoupling to segment the MRF it is possible to generate jump proposals efficiently while providing a mechanism for the use of deterministic methods, such as Gabor filtering, to speed up convergence.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملUnsupervised Learning for Object Recognition
This report consists of a literature review of papers dealing with object recognition using unsupervised learning techniques. Five papers that brought important contributions to the field are summarized, analyzed and compared. It was found that unsupervised object recognition was considered first as an image segmentation problem, but new unsupervised object learning techniques have been develop...
متن کاملUnsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory
In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and...
متن کاملAn unsupervised marker image generation method for watershed segmen- tation of multispectral imagery
Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformati...
متن کامل